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Various studies offer insightful perspectives on the potential impact of music-listening on
driving performance. These studies, however, present conflicting views on the effect of
music as either hindering or enhancing driving performance and advance inconclusive
claims regarding how and to what extent specific music parameters affect vehicular perfor-
mance. In this study, therefore, we conducted a systematic review and meta-analysis of rel-
evant studies. First, we identified experimental studies that measured the effects of music-
listening on driving performance through database searches using multiple variants includ-
ing ‘‘car”, ‘‘driv*”, ‘‘perf*”, and ‘‘music*”; of the 118 publications reviewed, 12 met the inclu-
sion criteria for the current meta-analysis. Second, we coded independent variables—i.e.,
tempo, volume, instrumentation, familiarity, musical style, the music’s source, and whether
music was selected by the researchers or the drivers—and dependent variables—i.e., vehic-
ular longitudinal and lateral control, driver reaction time, traffic signal violations, collisions,
and driving scores. Third, we ran mixed-effects and random-effects models to identify both
general tendencies and more particular trends related to the effect of music-listening on
driving performance—driving performance is here understood as the combination of vehicle
manipulation and road navigation. Consistent with anecdotal evidence, the results of this
meta-analysis show that music-listening has a statistically significant detrimental effect
on driving performance, specifically for collisions and longitudinal control. In contrast with
anecdotal evidence, however, the results of this meta-analysis show a detrimental effect
associated with music-listening at soft volumes and no significant difference in driving per-
formance associated with tempo. The study’s findings contributed to the development of a
process model, and the concluding discussion offers suggestions for future empirical inves-
tigations related to music and driving.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Because music-listening while driving is a widespread behavior (Rentfrow & Gosling, 2003; Sloboda, 1999), traffic
researchers, vehicle manufacturers, and insurance companies are beginning to draw their attention to the benefits and risks
associated with it. This has propelled an upsurge of studies that provide insightful perspectives on the potential impact of
music-listening on driving performance—driving performance is here understood as the combination of vehicle manipula-
tion and road navigation. Existing research, however, offers conflicting views on whether music-listening enhances or hin-
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ders driving performance, and conclusive empirical studies that attend to particular musical parameters and their effect on
driving performance are scarce.

Studies suggesting a detrimental effect of music-listening point to the music masking critical sounds (e.g., sirens, horns, or
engine sounds) that help drivers navigate through traffic (Bellinger, Budde, Machida, Richardson, & Berg, 2009; Dibben &
Williamson, 2007; Ho & Spence, 2017), and to activities related to music-listening (e.g., changing tracks, searching stations
or throughMP3 files, changing volume) that may lead to distraction (Harvey & Carden, 2009; Lee, Roberts, Hoffman, & Angell,
2012; Lerner, Baldwin, Higgins, Lee, & Schooler, 2015; Young, Mitsopoulos-Rubens, Rudin-Brown, & Lenné, 2012). Attending
more closely to musical parameters, Brodsky (2001) found a positive correlation between music tempo and both simulated
driving speed and perceived speed estimates. Additionally, behavioral research not measuring driving performance showed
that not only fast but also loud music (>85 dB) significantly correlate with physiological arousal (Dalton, Behm, & Kibele,
2007; Husain, Thompson, & Schellenberg, 2002), which is consistent with the notion that fast and loud music may cause dri-
vers to increase acceleration, cruising speed, and in turn traffic violations (Konz & Mcdougal, 1968). Alternatively, several
studies note that musical features (particularly volume and tempo) help improve performance, particularly during car-
following tasks (Cummings, Koepsell, Moffat, & Rivara, 2001; Oron-Gilad, Ronen, & Shinar, 2008; Ünal, de Waard,
Epstude, & Steg, et al., 2013; Ünal, Platteel, Steg, & Epstude, et al., 2013). Other studies acknowledge that fast and loud music
may induce risky driving practices, but reveal that drivers adopt cognitive or behavioral compensatory strategies, such as
slowing down or sitting upright (Hockey, 1997; Hughes, Rudin-Brown, & Young, 2013; Ünal, de Waard, et al, 2013; Ünal,
Platteel, et al., 2013).

Given the mixed and inconclusive claims in the literature, this meta-analysis aims to understand the overall effect of
music-listening on driving performance, and then further explore the extent to which music’s various parameters moderate
(i.e., enhance or interfere with) the vital processes of vehicle control and road navigation, such as speed maintenance, lane-
keeping, reaction time, and gap negotiation. In an effort to synthesize research results, we focused our analysis on two pri-
mary questions: (1) Does listening to music influence driving performance? and, (2) Does performance differ as a conse-
quence of specific music parameters?

2. Method

2.1. Search processes and study selection

As recommended by Cooper (2009), multiple sources were used to identify an exclusive set of studies for the current
meta-analysis. First, all three authors independently conducted systematic searches of literature via bibliographic databases
including PsycINFO, ERIC, and PubMed; systematic searches took place from February to March of 2018. The key terms used
in these searches included different words for motor vehicle (i.e., car, vehicle, automobile), different words for operating
motor vehicles (i.e., driving, manipulating, operating), and different words related to music (i.e., music, rock, song). Our search
strategies also included truncation (e.g., driv*, auto*, manipulat*, music*, perf*, etc.) and term combination using Boolean con-
nectors. Second, we searched the online library catalogue at the authors’ home institution (University of Miami) and Google
Scholar using the aforementioned search terms—this is known as forward searches—and manually searched the reference
lists of published studies to identify additional studies for inclusion—this is known as backward searches. The independent
searches resulted in a cumulative total of 118 publications.

All three authors independently screened the titles and abstracts of all 118 publications, evaluated references for inclu-
sion, and removed duplicates. This initial screening also accounted for the scholarly validity and availability of studies, and
ensured studies shared a similar conceptual hypothesis. The inclusion/exclusion criteria used during this initial screening
stage were: (1) the study must be written in English; (2) the study must be empirical; and (3) the study must examine
the effect of music-listening while driving. Discrepancies in the intra-author results after this initial stage were discussed
and re-evaluated collectively. This initial screening identified a total of 43 publications.

As a next step, each author independently reviewed the identified 43 publications. The specific inclusion/exclusion crite-
ria at this stage were: (1) the study must include at least one pair of groups that differ in music stimuli while driving; (2) the
study must evaluate the effect of music stimuli on at least one dependent variable related to direct measures of vehicular
performance; (3) there must have been sufficient statistical information for the calculation of the primary effect size and
its associated variance; and (4) the data must have been used only once in a study to avoid dependence among effect sizes.
If the same subjects were used in multiple publications, independent effect size from the study with more participants was
extracted. As a result, a total of 10 studies met inclusion criteria and were selected for inclusion in the current meta-analysis.
A supplemental literature search conducted in June 2018 resulted in the inclusion of 2 additional studies, leading to a total of
12 independent studies. Fig. 1 summarizes the literature search process.

Several studies were filtered by the inclusion/exclusion criteria—e.g., studies that used driving-related tasks (e.g., Beh &
Hirst, 1999; Consiglio, Driscoll, Witte, & Berg, 2003), that lacked experimental control conditions (e.g., Dalton et al., 2007;
Santoso, Maulina, Adystia, & Oei, 2013), that lacked direct measures of driving performance (e.g., Brodsky & Kizner,
2012), or that did not provide the statistical information necessary for calculating effect size (e.g., Wiesenthal, Hennessy,
& Totten, 2003; van der Zwaag et al., 2012). These studies, while remaining outside of the meta-analysis, provided keen



Fig. 1. Search flow and selection of publications included in the meta-analysis.
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insights on the impact of music on driving performance and hence were included in our systematic review and informed the
arguments put forth in the discussion section.

2.2. Coding of the included studies

A systematic coding scheme was developed to identify salient characteristics among all studies that would contribute to
the general conceptual hypothesis. These characteristics included: (1) study design, (2) participant characteristics, (3) exper-
imental conditions, (4) music characteristics, and (5) outcomes/measures. Each of these characteristics was independently
coded by the authors, and any coding discrepancies were resolved upon discussions and/or consultations among the authors.
Table 1 provides study authors, year of publication, experimental setting, participant characteristics, and the independent
and dependent variables. The coded information from each study will provide the general context, whereas the current
meta-analysis can be generalizable. Table 2 attends to the music component, and includes the music experimental condi-
tions, participants familiarity with the music, the source of the music, as well as the coded independent variables for music
directly related to the posited research questions.

Study design characteristics. A number of study design characteristics were coded, including (1) where the study was
conducted (United States vs. outside of United States), (2) publication type (published vs. unpublished), (3) sampling method
(probability based, non-probability based), (4) assignment method (probability based, non-probability based, and not appli-
cable because the same participants were measured after being exposed to different experimental conditions), (5) study



Table 1
Study authors, year of publication, experimental setting, participant characteristics, and independent and dependent variables. Studies included in the meta-
analysis are listed first, additional studies included in the systematic review are listed below the double line.

Study Pub.
year

Setting N Ages and gender
(SD)

Music Conditions (# of
conditions)

Measures (not included in
analysis)

Brodsky
Experiment 2

2001 Simulator 28 Ages: MN = 25
(4.58)
M 10, F 18

(4) Base, Tempo (Slow,
Med., & Fast)

Sig., Lat., Coll., Long.
(Phys.)

Brodsky and Slor 2013 Roadways 85 Ages: MN = 17.6
(0.41)
M 49, F 36

(3) Base, DSel, RSel Sig., Lat., Long.
(Score, Sub.)

Cassidy and MacDonald* 2009 Simulator 125 Ages: MN = 21.2
(2.1)
M 60, F 65

(5) Base, CarS., CarS
+ DSel, CarS + RSel
(Low & High Arousal)

Coll., Long.
(Sub.)

Cassidy and MacDonald 2010 Simulator 70 Ages: MN = 20.5
(2.1)
M 38, F 32

(7) Base, CarS., CarS
+ DSel, CarS + RSel
(Low & High Arousal;
Slow & Fast Tempo)

Coll., Long.
(Sub.)

Febriandirza, Chaozhong, Zhong, Hu,
and Zhang

2017 Simulator 98 Ages: MN = 24.47
(2.03)
M 49, F 49

(4) Base, NatS, Hard
Rock, Classical

Lat., Long.
(Phys., Sub.)

Jimison** 2014 Simulator 165 Ages: MD 21
M 47, F 118

(4) Base, Workload
(Low & High), Music:
DSel, RSel-Ufam, or
RSel-Fam

RT, Sig., Lat., Coll., Long.

Konz and McDougal 1968 Roadways 24 Ages: 18–23
M 24, F 0

(3) Base, Slow &
Tijuana Brass

Lat., Long.

Mizoguchi and Tsugawa
Experiment 1

2012 Simulator 5 Ages: early 20s
M 5, F 0

Base, Volume (Low,
Med., & High)

Coll., Long.

Navarro et al.
Experiment 1

2018 Simulator 24 Ages: MN = 22.7
(3.5)
M 13, F 11

(4) Base, DSel, DSel
+ Tempo, DSel -Tempo

RT, Long.
(Phys., Sub.)

Oron-Gilad et al. 2008 Simulator 12 Ages: 32–53
M 12, F 0

(2) Base, DSel Lat., Long.
(Phys., Sub.)

Ünal et al.* 2012 Simulator 69 Ages: MN = 21.04
(1.96)
M 23, F 46

(2) Base, DSel RT, Long. (Sub.)

Ünal et al.** 2013 Simulator 47 Ages: MN = 20.7
(1.34)
M 26, F 21

(2) Base, DSel (Volume:
Med. or High)

Lat. (Phys., Sub.)

Beh and Hirst* 1999 Laboratory 45 Ages: 18–24
M 21, F 24

Base, Volume (Low,
High)

RT

Brodsky and Kizner
Study A

2012 Roadways 22 Ages: MN = 26.3
(1.83)
M 14, F 8

DSel, RSel Sub.

Study B 31 Ages: MN = 25.5
(2.07)
M 11, F 20

RSel

Consigilo et al. 2003 Lab 22 Ages: MN = 21
(2.1)
M 11, F 11

Base, RSel, Concurrent
Tasks

RT

Dalton et al. 2007 Simulator 12 M 6, F 6 Music Type � Volume:
Classical, Hard Rock,
IndN, High, Low

Coll., Long., Phys.

Fairclough, van der Zwaag, Spiridon, and
Westerink*

2014 Simulator 100 Ages: MN = 21.2
(4.7)
M 49, F 51

Base, Music: Arousal
(Low or High] &
Valence (Pos. or Neg.)

Phys., Sub.

Groene and Barrett 2012 Simulator 23 Ages: MN = 16.3
(0.47)
M 5, F 5

Base, Music & Driving
Suggestion (Y/N)

Score, Sub.

Hughes et al. 2013 Simulator 21 Ages: MN = 35.05
(13.75)
M 1, F 20

Base, Music, & Singing RT, Lat., Long., Sub.

Mizoguchi and Tsugawa
Experiment 2
Experiment 3

2012 Simulator 5 Ages: early 20s
M 5, F 0

Base, RSel (Tempo:
Slow, Med., Fast)
Base, Fav. & Slow
Tempo, NFav. & Fast
Tempo

Coll., Long.
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Table 1 (continued)

Study Pub.
year

Setting N Ages and gender
(SD)

Music Conditions (# of
conditions)

Measures (not included in
analysis)

Navarro et al.
Experiment 2

2018 Simulator 32 Ages: 20–43
M 12, F 20

Base, RSel (Tempo:
Slow, Med., Fast)

Long.
N = 31

North and Hargreaves 1995 Lab 96 Ages:18.99 (1.57)
M 48, F 48

Concurrent Task (Y/
N) � RSel (Low & High
Arousal)

Long., Sub.

Santoso et al. 2013 Roadways 60 Ages: MN = 30.15
(3.38)
M 60, F 0

Dangdut, Rock Long.

Turner et al.** 1996 Lab 90 Ages: 18–49
M 45, F 45

Base, Volume (Low
Med., & High)

RT, MT, Tot.

Ünal et al.**

Study 2
2013a Simulator 46 Ages: MN = 21.83

(2.44)
M 21, F 25

Traffic (Low & High) �
Music (Base, Radio)

Other

van der Zwaag et al. 2012 Simulator 19 Ages: MN = 27.5
(5.2)
M 13, F 6

Music Type � Lane
Width
Base, Pos., Neg.
Wide, Narrow

Lat., Long., Phys., Sub.

Wang et al.** 2015 Simulator 165 Ages: MD 21
M 47, F 118

Base, Workload (Low &
High), Music: DSel,
RSel-Ufam, or RSel-
Fam

RT, Sig., Lat., Coll., Long.

Wiesenthal et al.* 2000 Roadways 40 Ages: MN = 26.2
M 20, F 20

Base, DSel Sub.

Wiesenthal et al.* 2003 Roadways 40 Ages: MN = 25.60
M 20, F 20

Base, DSel Sub.

Notes. Pub. is publication, N is number of participants, MN is mean, MD is median, M is male, F is female, Y is yes, N is no, DSel is driver-selected music, RSel
is researcher-selected music, CarS is car sounds, NatS is natural sounds, IndN is industrial noise, ± is an increase/decrease to specific music component. Base
is a baseline or control condition (e.g. no music or silence), Pos. is positive, Neg. is negative, Fav. is favorite, NFav. is non-favorite, Med. is medium, RT is
reaction time (e.g., lead vehicle braking), Lat. is lateral control (e.g., standard deviation of lane position [SDLP], lane excursions, etc.), Long. is longitudinal
control (e.g., speed, speed variance, time or distance headway), Sig. is traffic signal violations (e.g., disobeying traffic lights, signs, or signals), Coll. is number
of collisions, Score includes measures of driving deficiency scores based on mechanical, behavioral, or combination of these data types, Phys. is physiological
response, Sub. is subjective measures, MT is movement time, Tot. is total time, and Other is other measure (e.g. % of recalled content). Unless otherwise.
All other studies used within-subjects experimental designs.

* Between-groups design for music conditions.
** Mixed-groups design across conditions.
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design (posttest only control group design [between-subject design], a single group pretest-posttest design [within-subject
design], and pretest-posttest control group design [mixed-design]), and (6) publication year.

Participant characteristics. The coded participants characteristics included: (1) number of male/female participants, (2)
participants’ mean age (with standard deviation or range), (3) years of driving experience, and (4) whether participants had
prior car accidents/collisions.

Experimental conditions. The experimental setting was categorized into roadways or simulation. The roadways category
included studies that were conducted on public roads, which frequently used in-vehicle data recorders. The simulation cat-
egory included studies using driving simulators ranging from video game consoles (without standard driving controls) to
fixed based driving simulators with up to 240� view of the traffic environment and force feedback steering and pedals;
the most commonly used test tasks in the simulated environment was monotonous driving and car-following.

Music characteristics. Coding the music characteristics involved discerning extrinsic musical variables (e.g., familiarity)
versus intrinsic musical variables (e.g., tempo). The coded extrinsic music variables included: (1) music experimental condi-
tions (researcher-selected music and driver-selected music), (2) driver’s familiarity with the music selections (familiar, prob-
ably familiar, and unfamiliar), (3) source of music selections (pre-existing music and original music). The coded intrinsic
musical variables included: (1) tempo (slow < 80 bpm, medium 80–120 bpm, fast > 120 bpm), (2) volume (low � 60 dB*,
medium 61–79 dB*, high � 80 dB*), (3) volume-weighting (dB, dBA, dBC), (4) instrumentation (vocals, acoustic, electronic),
and (5) musical style (classic rock/pop, classical, country, easy listening, electronica, film/TV soundtrack, hard rock/heavy
metal, hip-hop/rap, jazz/blues, R&B/soul/funk, reggae, world/folk, and other).

Coding intrinsic musical variables involved four steps: (1) identifying music parameters considered across all studies—
tempo, volume (and volume-weighting), instrumentation, and style/genre emerged as the common parameters considered
across most (if not all) studies; (2) identifying subcategories represented within studies toward constructing generalized cat-
egory scales; (3) coding all data provided in the studies; (4) combining subcategories to obtain a more representative cross-
section. Steps #2 and #4 in this process entail making decisions that may affect the outcomes of the meta-analysis; further
details about the rationale behind those decisions are provided below.

Tempo. Although there is converging evidence regarding the limits of tempo perception (London, 2012), only few studies
venture to suggest exact bpm rates to define a category scale. Brodsky (2001) proposed the most specific category scale for



Table 2
Study authors, year of publication, music experimental conditions, familiarity, source, and coded independent music variables. Studies included in meta-
analysis are listed first, additional studies included in the systematic review are listed below the double line.

Study Pub.
year

Music experimental
conditions

Fam. Source Coded independent (music) variables

Tempo Volume
(weighting)

Instr. Styles

Brodsky 2001 RSel P PE S, M, F H (dBA) A, E Rk, Co, Jz, RB
Brodsky and Slor 2013 RSel N O S, M, F H (dBC) A Ea, Jz, O

DSel Y PE NG H (dBC) V, A,
E

Rk, Ea, El, TV, HR, Rp, RB,
Re, Wo, O

Cassidy and MacDonald 2009 DSel Y PE S, M, F L (dBA) V, A,
E

Rk

Cassidy and MacDonald 2010 RSel N O S, F L (dBA) V NG
DSel Y PE S, M, F L (dBA) V, A,

E
Rk, Cl, HR, Jz

Febriandirza et al. 2017 RSel NG PE S, M, F H (dBA) V, A,
E

Cl, HR

Jimison 2014 RSel Y, N PE S, M, F M (dB) V, A,
E

Rk

DSel Y PE NG M (dB) NG NG
Konz and McDougal 1968 RSel P PE S, M, F NG A Wo, O
Mizoguchi and Tsugawa

Experiment 1
2012 RSel Y PE M L, M (dB) V, A,

E
Rk

Navarro et al. Experiment 1 2018 DSel Y PE S, M, F M (dB) NG NG
Oron-Gilad et al. 2008 DSel Y PE NG NG NG NG
Ünal et al. 2012 DSel Y PE NG H (dBA) NG NG
Ünal et al. 2013b RSel P PE NG M (dB) V, A,

E
Rk, El, Jz, RB, O

Beh and Hirst 1999 RSel NG PE NG M (dBA) NG HR
Brodsky and Kizner 2012 RSel N O S, M, F H (dB) A Ea, Jz, O

DSel Y PE NG H (dB) NG Rk, Cl, TV, Rp, Re, Wo
Consigilo et al. 2003 NG NG PE NG NG V Rk
Dalton et al. 2007 RSel NG PE S, M, F L, H (dBA) V, A,

E
HR, Wo

Fairclough et al. 2014 RSel P PE S, M, F NG V, A,
E

Rk, Cl, El, TV, HR, O

Groene and Barrett 2012 RSel N O S NG V, A,
E

O

Hughes et al. 2013 RSel P PE S, M NG V, A,
E

Rk

Mizoguchi and Tsugawa
Experiment 2

2012 RSel P PE S, M, F M (dB) V, A,
E

Rk

Experiment 3 DSel Y PE S, M, F M (dB) V, A,
E

Rk

Navarro et al. Experiment 2 2018 RSel P PE S, M, F M (dB) A, E Rk, Co, Jz, RB
North and Hargreaves 1995 RSel N O M, F L, M, H (dB) E El
Santoso et al. 2013 RSel N PE F NG V, A,

E
Rk, Wo

Turner et al. 1996 RSel Y PE S, F L, M, H (dBA) V, A,
E

Rk

Ünal et al. 2013a DSel Y PE NG M, H, (dB) NG NG
van der Zwaag et al. 2012 DSel Y PE NG NG V NG
Wang et al. 2015 RSel P PE NG M (dB) NG NG

DSel Y PE NG M (dB) NG NG
Wiesenthal et al. 2000 DSel Y PE NG NG NG NG
Wiesenthal et al. 2003 DSel Y PE NG NG NG O

Notes: Pub. is publication, RSel is researcher-selected, DSel is driver-selected, Fam. is familiarity, Y is yes, P is probable, N is no, NG is not-given, PE is pre-
existing, O is original, S is slow, M is medium, F is fast, L is low, H is high, Instr. is instrumentation, V is vocal, A is acoustic, E is electronic, Rk is classic rock/
pop, Cl is classical, Co is country, Ea is easy listening, El is electronica, TV is TV/film, HR is hard rock/heavy metal, Rp is rap/hip-hop, Jz is jazz/blues, RB is
R&B/soul/funk, Re is reggae, Wo is world/folk, O is other.
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tempo: slow is 40–70 bpm, medium is 85–110 bpm, and fast is 120–140 bpm. Although arbitrary, Brodsky’s category scale
broadly follows conventionalized musical descriptions of speed and their associated metronome markings, and the bound-
aries of Brodsky’s scale reside closely within the thresholds offered by Westergaard (1975), which include 80 bpm and
120 bpm, to define the perception of speed in music (see also London, 2012). We therefore adopted Brodsky’s category scale
and normalized it according to Westgaard thresholds, resulting in the following: slow is <80 bpm, medium is 80–120, and
fast is >120 bpm. The perception of the music’s speed (in terms of fast, medium, or slow), however, is highly subjective and
contingent upon the interaction of multiple musical parameters including meter, harmonic rhythm, inter-onset-intervals,
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drum-beat patterns, and texture. Furthermore, perceived pulses may fall within several (hyper-)metric levels, and the result-
ing rate of pulses would therefore fall within different tempo categories; this is a common phenomenon when approaching
the outer boundaries of tempo perception, as listeners are likely to switch between metrical levels at very fast or very slow
tempi (Madison & Paulin, 2010). Fortunately, within the selected styles of music, tempo was by-and-large stable, without
sudden or gradual fluctuations. When the tempo of a music selection was categorized by the researcher or the driver in con-
flict with our coding strategy, we overrode the researcher’s categorization and adjusted accordingly.1

Volume. For a category scale for volume we drew on Turner, Fernandez, and Nelson (1996), a study widely cited among
the studies included in the systematic review (Bellinger et al., 2009; Brodsky, 2001; Brodsky & Kizner, 2012; Cassidy &
MacDonald, 2009; Dalton et al., 2007; Groene & Barrett, 2012; Jimison, 2014; Ünal, Steg, & Epstude, 2012; Ünal, de
Waard, et al, 2013; Ünal, Platteel, et al., 2013; Wang, Jimison, Richard, & Chuan, 2015), with the assumption that such cat-
egory scale was adopted and embedded within their studies’ design. Turner et al. (1996) suggests a continuous category scale
divided by two thresholds, labeled as ‘‘softer (60 dBA)” and ‘‘louder (80 dBA)” in relation to a 70 dBA as a medium volume
level; this is consistent with Staum and Brotons (2000) contextualization of volume levels within music-listening environ-
ments, which includes comfortable listening (70 dBA), symphony concert (76–100 dBA), Walkman headphone (90 dBA), bar
and dance-club (100 dBA), and amplified rock concert (>112 dBA). Hence, we formulated the following category scale: low is
�60 dB*, medium is 61–79 dB*, high is �80 dB*. Analogously to the perception of tempo, the perception of volume (in terms
of soft, medium, or loud) is relative. This relative perception of volume is captured, in part, by the different volume-
weighting systems.

Volume-weighting. The studies included in the meta-analysis varied in the volume-weighting (dB, dBA, and dBC), and a
few studies omitted volume and volume-weighting altogether and offered a loudness rating—loudness is understood as an
auditory sensation to sounds expressed on a scale of categorical units extending from soft to loud. Different volume-
weightings indicate different loudness functions which are not analogous: dB is the standard unit of sound pressure level;
an ‘A’ filter adjusts the number of decibels to account for the human ear’s response to various frequencies; a ‘C’ filter is sim-
ilar to the ‘A’ filter but measures uniformly within the 30 Hz to 10 kHz. Unfortunately, there is no function to map equiva-
lencies between these volume-weightings; coding of volume, therefore, did not account for differences related to volume-
weighting.

Genre/style. Genre and style classifications in music are highly problematic, as these are fluid cultural constructs that vary
over time and over geographic location. Furthermore, music selections may generally fall within two or more style/genre
categories—e.g., film/TV soundtracks may cross multiple categories—and the listeners’ perception of the genre and style is
contingent upon their conversance with all genres and styles included. We therefore adopted Brodsky and Slor (2013) cat-
egorization, which is the most detailed among all reviewed studies, and subsequently purged/merged categories when
duplications were observed (e.g., the ‘movies/TV shows’ and the ‘movies/TV shows in Hebrew’ categories).

Instrumentation. In contrast to coding other intrinsic music variables, coding instrumentation was straightforward.
While many studies provided a detailed list of musical instruments included in the music selections, other studies listed
the particular music selections by title of the piece/song and name of the performer(s). In the latter case, we retrieved
the music selections and noted the included instrumentation. Given the large number of possible instruments, we identified
broader, more salient categories: vocals, acoustic instruments, and electronic instruments.

Outcome characteristics. The outcome variables consisted of direct measures of driving performance, with a coding cat-
egorization based on ‘‘operational definitions” provided by Caird and Horrey (2011), Caird, Johnston, Willness, Asbridge, and
Steel (2014). The categories were (1) vehicular longitudinal control (e.g. speed, speed variance, coherence), (2) vehicular lat-
eral control (e.g. lateral position, standard deviation of lateral position), (3) driver reaction time (e.g. brake response time,
time to contact), (4) traffic signal violations (e.g. disobeying traffic lights, signs, or signals), and (5) collisions (when a vehicle
collides with another vehicle, pedestrian, animal, or stationary or displaceable objects).

2.3. Effect sizes

The primary effect size for the current meta-analysis is the standardized mean difference (d), which quantifies mean dif-
ference on outcome variable between two comparison groups (g1: control group and g2: experimental group). The standard-
ized mean difference (d) was computed as
1 Two
(1968)
retrieve
and Kon
(1968)
‘fast’) w
coding
‘fast’).
d ¼ Mg1 �Mg2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Spooled=ðng1 þ ng2 � 2Þp ;
cases emerged as non-conforming with our coding strategy: Konz and Mcdougal (1968) and Cassidy and MacDonald (2009). Konz and Mcdougal
indicates musical tempo using the ‘slow’ and ‘fast’ qualifiers, without providing a quantitative measure corresponding to these categories; we therefore
d all music selections included in the study and calculated the tempi, resulting in the following: Konz’s ‘slow’ tempi comprise selections at 67–120 bpm,
z’s ‘fast’ tempi comprise selections at 82-170bpm. Given the significant overlap of values between the two categories, our coding of Konz and Mcdougal
reflects their inclusion of music at all three tempi (‘slow’, ‘medium’, and ‘fast’). Cassidy and MacDonald (2009) only provides two categories (‘slow’ and
ithin the ‘participant selected’ condition, yet identifies a numerical threshold (98 bpm) located at the center of our ‘medium’ category. Therefore, our
of Cassidy and MacDonald (2009), within the ‘participant selected’ condition, reflects their inclusion of music at all three tempi (‘slow’, ‘medium’, and
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where Spooled = SD2
g1 ng1 � 1
� �þ SD2

g2 ng2 � 1
� �

, where SD is the standard deviation of the outcome variable for each compar-
ison group, M is mean of outcomes for comparison groups, and n is sample size for each comparison group.

The associated variance was computed as
vd ¼ ng1 þ ng2

ng1ng2
þ d2

2 ng1 þ ng2
� �
For studies using pretest-posttest design, where difference in pretest and posttest was compared, standardized mean dif-
ference between pretest and posttest was computed as
dgain ¼ Mpost �Mpreffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSD2

post þ SD2
preÞ=2

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� rpre;postÞ

p ;
where SD is the standard deviation of the outcome variable measured at each time point, M is the mean of outcomes mea-
sured at each time point, and r is a correlation between pretest and posttest measures. When r is not reported, a correlation
value of 0.5 was used to compute the effect size.

The associated variance was computed as
vdgain ¼
2 1� rð Þ

n
þ d2

gain

2n
As suggested by Hedges and Olkin (1985), the computed standardized mean difference and its associated variance were
corrected for the small sample bias by multiplying them by a correcting factor (J), J = 1–3/(4 * df � 1), where df is the degrees
of freedom. The unbiased effect size (g) and its associated variance (vg) were computed using g = d * J and v(g) = v(d) * J2,
which are used in the current meta-analysis. Herein, the unbiased effect size (g) is denoted as d.

2.4. Dependencies of effect sizes

As many studies used multiple dependent variables to evaluate the effect of music-listening while driving, multiple effect
sizes were extracted from a single study, leading to the violation of independence assumption for the meta-analysis
(Borenstein, Hedges, Higgins, & Rothstein, 2009; Gleser & Olkin, 2009). For example, Groene and Barrett (2012) evaluated
the effect of music on one outcome variable (i.e., the number of driving errors made), while Brodsky and Slor (2013) used
multiple measures of driving outcomes in their study. Of several available methods that deal with dependency issues
(Cooper, 2009), effect sizes were first separated by type of outcome variable. Then, within each category of the outcome vari-
ables, dependent effect sizes were averaged (Borenstein et al., 2009) and thus effect sizes were no longer dependent for per-
forming the overall- and moderator-analysis.

2.5. Publication bias

The potential publication bias—the tendency that studies with significant effect in a favorable direction are more likely to
be published—is assessed using multiple indicators including (1) Begg and Mazumdar’s rank correlation test for funnel plot
asymmetry, (2) Egger’s regression test of intercept, and (3) funnel plot. When Begg and Mazumdar’s rank correlation test for
funnel plot asymmetry and Egger’s regression test of intercept were found to be statistically significant, sufficient evidence
that publication bias might exists.

2.6. Statistical analyses

The metafor package (Viechtbauer, 2010) in R statistical software (R Core Team, 2013) was used to perform meta-
analysis. In particular, the current study was based on the meta-analytic methods suggested by Hedges and Olkin (1985),
which is to compute an overall effect of individual effect sizes weighted by the inverse of their associated variance.

Overall effect. The overall effect of music listening on driving was estimated in the current meta-analysis. In particular,
the overall homogeneity in individual effects was first assessed by testing the significance of Q-statistics under the assump-
tion that all effects were from the same population. If Q-statistics with a number of effects - 1 degrees of freedom was found
to be statistically significant, which indicates that the observed individual effects come from different populations, the over-
all effect was estimated under the random-effects model, where between-study variance was estimated using the Restricted
Maximum Likelihood (REML) estimation method (Veroniki et al., 2016) was incorporated into the estimation of the overall
effect. However, when the Q-statistics was found not to be statistically significant, indicating that the observed individual
effects come from the same population, the fixed-effects model was used to estimate the overall effect.

Moderator effect. When significant between-study variation in effect sizes was found to be salient, and thus effect sizes
were from the different population, a series of moderator analyses were performed to find sources of variation in effect sizes
using various coded variables. In particular, the mixed-effects model with a moderator was adopted when a sizeable
between-study variation after controlling for the moderator existed. When the mixed-effects model was used, the additional



Fig 2. Funnel plots, separately by outcome.
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between-study variance after controlling for moderator (estimated using REML method) was incorporated (Veroniki et al.,
2016). Otherwise, the fixed-effects analysis with a moderator was used to compare individual effects by the different groups.

3. Results

3.1. Description of studies and sample included in the studies

Tables 1 and 2 display the coded information from the included studies. Of the 12 studies, one study was published before
2000, while all other studies were published between 2002 and 2018. Most of the studies (k = 10) used simulators for driving
for their experiment, while a relatively low number of studies (k = 2) asked participants to drive on roadways. The total sam-
ple size used in all 12 studies was 752, with individual ranges from 5 to 165. Across all 12 studies, participants were (near-)
equally distributed by gender (47% for males).

3.2. Publication bias

Fig. 2 displays funnel plots that are scatterplots of effect sizes from individual studies against the inverse values of their
associated standard errors, separately by five outcomes measuring driving performance. These funnel plots suggest that pub-
lication bias might not be a concern on any of five outcome measures. Similar conclusions were drawn from both Egger’s
regression test for intercept (z = �0.03, p = .98 for reaction time; z = �2.58, p = .009 for signal violation; z = 1.34, p = .18 for
lateral control; z = �2.06, p = .04 for collisions; z = 1.58, p = .11 for longitudinal control) and Begg and Mazumdar’s rank test
(p = .76 for reaction time; p = .14 for signal violation; p = .51 for lateral control; p = .11 for collisions; p = .30 for longitudinal
control), where the null hypothesis stating no relationship between effect sizes and their associated variance was not
rejected.



Fig. 3. Forest plots for effects related to reaction time, signal violations, and lateral control.
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3.3. Effect of music on driving performance

The effect of music on driving performance was evaluated separately by the following five outcome variables: reaction
time (k = 9), signal violations (k = 6), lateral control (k = 23), collisions (k = 20), and longitudinal control (k = 55). On all out-
come measures, except signal violations, between-study variations were all statistically significant and substantially larger
in their magnitudes (Q(8) = 84.56, p < .01, I2 = 94.53 for reaction time, Q(22) = 430.81, p < .01, I2 = 93.63 for lateral control,
Q(19) = 412.80, p < .01, I2 = 97.84 for collisions, and Q(54) = 1792.07, p < .01, I2 = 98.63 for longitudinal control). Figs. 3 and
4 display forest plots of individual study effects with the estimated overall effect separately by the five outcome measures.

Under the random-effects model, where between-study variation estimated using Restricted Maximum Likelihood Esti-
mation (REML) was incorporated, the statistically significant effect of listening to music while driving was found on the
dependent variables of collisions (z = �2.78, p = .01) and longitudinal control (z = �2.36, p = .02), suggesting that driving with
music leads to a negative relation with driving performance.

As shown in Fig. 5, the estimated standardized mean differences between control and experimental groups were �0.96
(SE = 0.34, 95% CI: �1.63, �0.28) for collisions and �0.58 (SE = 0.25, 95% CI: �1.06, �0.10) for longitudinal control. These
results suggest that subjects in the experimental group who listened to music while driving showed significantly more col-
lisions and poorer longitudinal control, when compared to subjects in the control group. The magnitudes of mean difference
between the two comparison groups were large on both collisions and longitudinal control. No statistically significant dif-
ference between experimental and control groups, however, was found on other outcomes, including reaction time, signal
violations, and lateral control.

3.4. Moderating effect of music stimuli

For each of the five outcome variables: reaction time (k = 9), signal violations (k = 6), lateral control (k = 23), collisions
(k = 20), and longitudinal control (k = 55), a series of the mixed-effects model were conducted to examine whether the effect
of music-listening on driving performance vary by the different features of music stimuli used in the experiment. Features of
music stimuli examined in moderator analyses included (1) whether music was selected by the researcher or driver
(researcher vs. driver), (2) whether music is familiar to participant (familiar, probably familiar, unfamiliar), (3) the source
of music (pre-existing vs. original), (4) tempo of music (slow, medium, fast, mixed), and (5) volume of music (low, medium,
high). Table 3 summarizes results from the moderator analyses, which were evaluated separately for each outcome measure.



Fig. 4. Forest plots for effects related to collisions, and longitudinal control.
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3.4.1. Selection of music
The random-effects model was first conducted to gather effect sizes that compare driving performance of participants

who listened to researcher-selected or driver-selected music while driving. Results from the random-effects model suggests
that the driving performance of participants who drove while listening driver-selected music did not differ significantly,

compared to those who drove with researcher-selected music (d
�
= �0.01, SE = 0.06, z = �0.19, p = .85, k = 15).

Results from the mixed-effects model, however, suggest that the effect of listening to music while driving significantly
varied depending on whether music was selected by researchers vs. drivers. Such moderating effect was found on lateral
control (Q(1) = 4.50, p = .03) and collisions (Q(1) = 3.95, p = .04). Specifically, the effects of music on lateral control and col-

lisions were statistically significant when participants were driving with researcher-selected music (d
�
= �0.61, SE = 0.23 for

lateral control; d
�
= �1.53, SE = 0.43 for collision), suggesting a detrimental effect of researcher-selected music on driving

performance.

3.4.2. Familiarity of music
Results from the mixed-effects model indicate that the effect of listening to music while driving significantly differs

depending on the extent to which music is familiar to participants. Such effect was found on three outcomes: signal viola-
tions (Q(3) = 7.82, p = .02), lateral control (Q(3) = 9.41, p = .02), and collisions (Q(2) = 7.78, p = .02). Specifically, participants in
the experimental group showed significantly higher mean on collisions when they listened to unfamiliar music while driving

(d
�
= �1.99, SE = 0.48). In addition, a detrimental effect of music was found on signal violation when participants were less

familiar with the music (d
�
= �0.28, SE = 0.14).



Fig 5. Estimated mean difference between control and experimental groups by outcomes.

Table 3
Moderator analysis.

Music feature RT Sig Lat. Coll. Long.

Selection NA Q(1) = .10 Q(1) = 4.50** Q(1) = 3.96* Q(1) = .05
Researcher �.11 (.15) �.61** (.23) �1.53** (.43) �.67 (.35)
Driver �.04 (.18) .05(.21) �.25 (.48) �.55 (.41)

Familiarity NA Q(3) = 7.82* Q(3) = 9.41* Q(2) = 7.78* Q(3) = 2.03
Yes �.03 (.08) .05 (.20) �.25 (.45) �.48 (.37)
Probably �.28* (.14) �.29 (.30) �.33 (.77) .05 (.65)
Not probable .20 (.11) �.10 (.71) �1.99** (.48) �1.02* (.44)
Not given – �1.23** (.36) – �.50 (.91)

Source NA NA Q(1) = .04 Q(1) = 11.98 ** Q(1) = 3.32
Pre-existing �.26 (.17) �.47 (.30) �.37 (.27)
Original �.10 (.82) �2.81** (.61) �1.51** (.56)

Tempo Q(1) = .11 Q(4) = 3.73 Q(4) = 2.33 Q(4) = 8.36 Q(4) = 2.08
Slow �.13 (.30) �.09 (.52) �.89 (.62) �1.19 (.54)
Medium �.18 (.30) �.10 (.53) �.27 (1.38) .05 (1.84)
Fast �.58 (.31) .02 (.38) �2.50** (.63) �.37 (.56)
Mixed .008 (.39) .03 (.22) �.59* (.28) �.33 (.53) �.52 (.37)
Not given .22 (.53) .05 (.16) �.11 (.35) �.002 (.97) .006 (.82)

Volume Q(1) = .59 Q(1) = .03 Q(2) = 2.74 Q(2) = 1.71 Q(3) = 15.89**

<60 – – – �1.28** (.43) �1.52** (.33)
61–79 .001 (.32) �.07 (.12) .14 (.37) �.16 (.89) .47 (.54)
>80 .74 (.91) �.05 (.28) �.53*(.23) �.52 (.77) �.13 (.43)
Not given – – �.11 (.27) – .49 (.64)

Notes. NA: Not applicable due to no variation; RT is reaction time (e.g., lead vehicle braking), Lat. is lateral control (e.g., standard deviation of lane position
[SDLP], lane excursions, etc.), Long. is longitudinal control (e.g., speed, speed variance, time or distance headway), Sig. is traffic signal violations (e.g.,
disobeying traffic lights, signs, or signals) and Coll. is number of collisions.

* p < .05.
** p < .01.
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3.4.3. Music source
Results from the mixed-effects model indicate that the effect of music-listening differs depending on the music’s source,

specifically on collisions (Q(1) = 11.98, p < .01). These results suggest that participants perform significantly worse when

music was original (d
�
= �2.81, SE = 0.61), suggesting that the effect of music is negative when participants listened to original

music while driving.

3.4.4. Music tempo
None of the mixed-effects models show that the effect of music on driving performance significantly differs by the tempo

of music used in the experimental design.

3.4.5. Music volume
Results from the mixed-effects model show that music volume significantly moderates the effect of music on longitudinal

control (Q(3) = 15.89, p < .01). Specifically, a negative, but significant effect of music-listening while driving, was found when

volume was less than 60 dB* on longitudinal control (d
�
= �1.52, SE = 0.33).

4. Discussion

Research on the effects of music-listening on driving performance offers conflicting views, with results that show both
detrimental and beneficial effects. This meta-analysis provides the first comprehensive understanding of the relationship
between music-listening while driving and driving performance by integrating the quantitative findings of relevant indepen-
dent studies, estimating the overall effect, and identifying potential moderators that would explain the observed variations
in study findings. This discussion fleshes out the results by attending to each moderator in the relationship between music-
listening and driving performance, by providing related background information that helps contextualize the results.

4.1. Music and driving behavior

Selection. Drivers may use music to regulate their mood and arousal level, which in turn may enhance driving perfor-
mance (Brodsky & Slor, 2013; Dibben & Williamson, 2007; Wiesenthal, Hennessy, & Totten, 2000); Wiesenthal et al.
(2000), for instance, found that driver-selected music limited the driver’s stress when driving through irritating traffic con-
gestion. Investigating the effect of driver-selected versus researcher-selected music would therefore offer a contextualized
understanding of the effect of music on driving performance. Various studies are consistent with the premise that self-
selected music helps drivers regulate their mood and arousal level, which translates into better performance. Cassidy and
MacDonald (2009) compared the effect of driver-selected versus researcher-selected music on the performance of a driving
game; their results show that researcher-selected music had a detrimental effect in task performance; in a later study,
Cassidy and MacDonald (2010) also found that researcher-selected music resulted in deficient performance. In contrast,
Jimison (2014) found no significant difference in the effect of driver- or researcher-selected music on driving performance.
Two models run in this meta-analysis resulted in slightly different results: the results from the random-effects model are
consistent with Jimison (2014), i.e., there is no difference between driver-selected or researcher-selected music; the results
from the mixed-effects model, on the other hand, are partly consistent with Cassidy and MacDonald (2009, 2010) and
Wiesenthal et al. (2000), showing a detrimental effect of researcher-selected music on lateral control and collisions.

Familiarity. The independent variables of familiarity and driver-selected/researcher-selected music are often con-
founded, wrongly suggesting that researcher-selected music is unfamiliar to drivers; within experiments where familiarity
is not part of the conceptual hypothesis, for instance, researchers generally seek to increase ecological validity by selecting
familiar music. To disentangle these confounded variables, Jimison (2014) designed three music conditions: driver-selected/
familiar, researcher-selected/familiar, researcher-selected/unfamiliar; the results of that study, however, suggest no signif-
icant difference in driving performance under the familiar or unfamiliar music conditions. In contrast, Cassidy and
MacDonald (2009) found that listening to unfamiliar music is detrimental to driving performance and speculate that their
results stem from driver-selected music being ‘‘most appropriate for the task context, liked most, and perceived to be least
distracting, being context-specific, goal appropriate and familiar in nature” (p. 375). From such conjecture transpires that
familiarity and preference may also be confounded. To avoid the conflation of familiarity and preference, Mizoguchi and
Tsugawa (2012) investigated the effects of ‘favorite’ rather than ‘familiar’ music, thus embedding a layer of enjoyment that
may not exist in familiar music; the results of their study are nonetheless consistent with other studies focusing on famil-
iarity and on preference (Navarro, Osiurak, & Reynaud, 2018; North & Hargreaves, 1995, 1999), suggesting that listening to
‘non-favorite’ music has a detrimental effect as measured by the number of accidents. The results of this meta-analysis are
likewise consistent with prior findings, showing a detrimental effect (particularly on collisions and signal violation) when
listening to unfamiliar music while driving.

Source. The possible motivations for including original music, according to our systematic review, include: (1) to control
for intrinsic music variables (such as tempo, instrumentation, timbre, range, and volume) and thus ‘‘provide a level of per-



Fig. 6. The proposed process model for the effect of music on vehicular performance.
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ceptual complexity that does not divert mental resources while driving” (Brodsky & Slor, 2013, p. 385)2; and (2) to control for
familiarity effects (Brodsky & Kizner, 2012; Cassidy & MacDonald, 2010). Since originally composed music can only be
researcher-selected, this variable lends itself to be confounded with familiarity. The results of our meta-analysis are consistent
with Cassidy and MacDonald (2010), suggesting that participants perform significantly worse when listening to original music.

Tempo. Tempo is a music variable discussed in nearly all studies, arguably for the following reasons: (1) an understand-
ing of tempo, as compared to instrumentation, texture, harmonic rhythm, meter, etc., is not contingent upon a sophisticated
understanding of music; (2) a relatively early study (Brodsky, 2001) showed that tempo has an effect on simulated driving
speed and on frequency of traffic violations, including speeding, collisions, lateral control, and red-light crossings3; (3) stud-
ies rely on survey data to advance broad claims and to conclude, for instance, that ‘‘the majority [of drivers] listen to highly
energetic aggressive music consisting of a fast-tempo and accentuated beat played at strong intensity levels” (Brodsky &
Kizner, 2012, p. 172). Additionally, numerous studies assume a detrimental effect of high tempi by drawing on indirect variables
that result from it, including elevated heart rate (Brodsky, 2001; Dalton et al., 2007), high arousal potential (Cassidy &
MacDonald, 2009; Dalton et al., 2007; Navarro et al., 2018; van der Zwaag et al., 2012), musical complexity (Brodsky, 2001;
Brodsky & Kizner, 2012; Hughes et al., 2013), and cognitive load (Dalton & Behm, 2007; North & Hargreaves, 1995, 1999).4 Aside
from Brodsky (2001), the only other study that shows a positive correlation, albeit related to high arousal music rather than fast
tempi, is Cassidy and MacDonald (2010), who found the ‘‘greatest overall inaccuracy in high-arousal music amplified by an
increase in the tempo of the music” (462). In contrast, other studies found a negative correlation between tempo (categorized
as high arousal music) and lap times (North & Hargreaves, 1995, 1999), and between tempo and task completion times (Cassidy
& MacDonald, 2009). The results of our meta-analysis are consistent with studies that found no effect of tempo on accuracy and
speed (Cassidy & MacDonald, 2009), on driving behavior (Navarro et al., 2018), and on car-following and braking for unexpected
obstacles (Wang et al., 2015).

Volume. The literature offers conflicting views on the effect of volume on driving performance. Numerous studies report
that loud volumes have a detrimental effect in the overall driving performance (Mizoguchi & Tsugawa, 2012; Spinney, 1997),
in speeding (Brodsky, 2001), vigilance (Beh & Hirst, 1999; Dalton & Behm, 2007), and in response to stop-light signals (Beh &
Hirst, 1999; Dalton & Behm, 2007). Similarly, North and Hargreaves (1995) suggested that combining high volume and high
tempo results in cognitively demanding listening situations conducive to a higher frequency of driving errors and increased
lap times. In contrast to studies that associate loud volumes with detrimental effects, Ünal, de Waard, et al. (2013), Ünal,
Platteel, et al. (2013) found no difference in driving performance (i.e., a car-following task) when listening to music at loud
or moderate volumes. In addition, numerous studies identified volume as a means for drivers to counter fatigue and main-
2 Navarro et al. (2018) controlled for tempo without composing original music, but by manipulating the pre-existing tracks to increase or decrease tempi by
30%.

3 Later work by Brodsky and colleagues draws on earlier findings, arguing that high music complexity is the consequence, among other things, of faster
tempo, and that ‘‘the higher the complexity the greater the cost on attention resources” (Brodsky & Kizner, 2012, p. 165).

4 Assuming however that HR, arousal, and to some extent musical complexity result from fast tempo should not lead us to conclude that increased HR,
arousal, or musical complexity results in increased speeds, inaccuracies, violations, etc.
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tain alertness (Dibben & Williamson, 2007) and to decrease boredom (Hargreaves & North, 2010). A more nuanced perspec-
tive is offered by Turner et al. (1996), who investigated the effect of volume on the response to unexpected visual events and
reported that music at a moderate volume (70 dBA) facilitates performance (i.e., faster reaction to signals) as compared to
conditions with music at low volume (60 dBA) or high volume (80 dBA). Consistent with these results, Consiglio et al.
(2003) reported that music at medium volumes leads to performance comparable to a silent condition (in braking and vig-
ilance tasks). The results of this meta-analysis suggest that music at low volumes have a detrimental effect on longitudinal
control; this aligns, in part, with the results reported by Turner et al. (1996).

Instrumentation. Through several studies, instrumentation emerges as a relevant variable, particularly when contem-
plating the inclusion or exclusion of vocals (and lyrics). Within contexts indirectly related to driving, Crawford and Strapp
(1994) showed that vocal music disrupts performance (i.e., scanning speed and logical reasoning) significantly more than
instrumental music; similarly, Avila, Furnham, and McClelland (2012) showed that lyrics interfere with the processing of
verbal information. Within the context of music and driving, therefore, we may expect that vocal music (lyrics) may disrupt
performance and may interfere with the proper reading of verbal driving signs. Within the reviewed studies, Brodsky (2001),
Brodsky and Kizner (2012) and Brodsky and Slor (2013) attended to the inclusion/exclusion of vocals, arguing that lyrics add
a ‘‘level of perceptual complexity that [may] divert mental resources while driving” (Brodsky & Slor, 2013, p. 385). These
notions notwithstanding, the number of studies that included selections without vocals is relatively small, precluding us
from running analysis that would single out this variable.

Style/genre. Drawing on survey data, some studies report that young drivers (around 16–30 y/o) listen to pop, rock,
dance, hip-hop, house, and rap styles when driving (Brodsky & Kizner, 2012; Brodsky & Slor, 2013; Brodsky, 2001), and that
some particular styles (i.e., rap and hip-hop) ‘‘prompt aggressive conduct” and ‘‘have adverse effects on at least 50% of
drivers” (Brodsky & Kizner, 2012, p. 165). The reporting of style in most studies, however, conforms to a generalized attempt
to increase the ecological validity of the experiments by exposing drivers to music they would normally listen to while driv-
ing; the results of individual studies, nevertheless, can only be generalized to the style(s) of music used within each study.
Santoso et al. (2013) investigated the effect of music genre on driving speed, albeit with only two conditions each with a
single music selection drawn from Indonesian popular music; the study reported no significant effect. While investigating
the effect of volume on driving-related tasks, Dalton and Behm (2007) found that hard rock music affects heart rate and reac-
tion time, which in turn may affect tasks involving concentration and attention; the study, however, only included hard rock
music and panpipe music (labeled as ‘classical’ in the study). Due to the relatively small number of studies coinciding in
selected styles, and to the fluid nature of the concept of style, generalization is not warranted, and no analysis was con-
ducted. Further research is needed to understand how independent variables interact with different musical styles to influ-
ence driving performance.

4.2. Proposed conceptual model

Fig. 6 presents a conceptual model that introduces key factors identified in the current systematic review and meta-
analysis that may influence the relationship between music-listening and vehicular performance. The key factors in the pro-
posed conceptual model are (1) music-listening as an independent variable, (2) potential mediators including psychological
and/or physiological response, (3) vehicular performance as an outcome, and (4) moderator variables including music fea-
tures, driver characteristics, and other contextual factors. The proposed conceptual model delineates howmusic may directly
or indirectly affect vehicular performance via psychological (e.g., mood, arousal, emotion, and anxiety) and physiological
responses (e.g., heart rate, blood pressure, and cortisol levels); in the model, vehicular performance is operationalized as
reaction time, longitudinal control, traffic signal violation, lateral control, and collisions. It is hypothesized that the relation
between music-listening and driving performance can differ by other moderator variables, including (1) musical parameters
such as volume, familiarity, tempo, instrumentation, and style/genre, (2) driver characteristics such as gender, driving expe-
rience, and age, and (3) contextual/environmental factors such as road type, time of day, and road visibility.

The model summarizes the music variables identified and manipulated in the studies included in the meta-analysis (i.e.,
volume, familiarity, tempo, instrumentation, and style/genre), yet it is not intended to reflect the findings exclusive of this
meta-analysis. Meta-analyses seldom provide definitive conclusions; rather, meta-analyses are ‘‘interpreted as state-of-the-
art empirical knowledge about a specific effect or research area” (Lakens, Hilgard, & Staaks, 2016). This model, therefore, is
broadly designed to guide future research and to guide in the formation of testable hypotheses.

4.3. Limitations and future research

There are a number of methodological and theoretical limitations that need to be addressed for the current meta-analysis
and systematic review. One of the most salient methodological limitations stems from the inability to validate the proposed
conceptual model (shown in Fig. 6) as no single researcher or study has investigated all key factors included in the proposed
conceptual model. Additional empirical research, therefore, is needed to validate the proposed model. In addition, due to the
small number of studies included in the meta-analysis, generalization of the statistical findings in the current meta-analysis
is limited to the population that the included studies were drawn from.
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5. Conclusions

Much research explores the effects of music-listening while driving, but the results of these studies offer conflicting views
at numerous levels. This meta-analysis integrated the findings of relevant studies, identified the potential moderators/me-
diators for variation in effects, and estimated the overall effects. The results of this meta-analysis resonate with empirical
research and with anecdotal evidence alike, in that music-listening has an effect on driving performance; yet these results
also reveal unexpected insights regarding the effect of particular musical parameters on driving performance: while loud
volumes and fast tempi have long been suspected to have a detrimental effect on driving performance, the results of this
meta-analysis indicate a detrimental effect of soft volumes and no significant difference in driving performance associated
with tempo.

Naturally, at this point the reader may expect concrete recommendations related to music while driving. It is beyond the
scope of this study, however, to speculate about (and suggest) behavioral changes, even when these suggestions are
informed by the results of this meta-analysis. The concrete insights about tempo and volume notwithstanding, through this
meta-analysis we identified shortcomings and limitations in existing studies; these limitations preclude us from speculating
about the precise mechanisms whereby music and particular musical parameters support or hinder driving performance.
Based on these shortcomings and limitations, the authors suspect that truly understanding the effect of music-listening
on driving performance should be contextualized more broadly, investigating related mechanisms such as cortical entrain-
ment (Doelling & Poeppel, 2015), stress regulation (Poock & Wiener, 1966), attention and memory improvement (Perham &
Vizard, 2011), mental fatigue alleviation (Guo, Ren, Wang, & Zhu, 2015), and arousal and positive mood modulation
(Easterbrook, 1959; Perham & Vizard, 2011).

Additionally, when investigating music-listening and driving performance within the broader context of psycho-
physiological mechanisms, it is critical to attune the experimental design to evolving trends. For instance, existing research
draws by-and-large on a cohort of participants who predate the widespread use of digital multimedia. The ‘Generation Z’ is
for the most part excluded from this research; this demographic cohort (i.e., individuals born mid-1990s to mid-2000s) is
composed of ‘digital natives’ (Prensky, 2001), whose perceptual and cognitive capacities have been shaped by a native
engagement with new technologies, and who therefore may engage with music-listening and driving performance differ-
ently than earlier generations. Ultimately, because music-listening while driving is likely to continue to be a widespread
behavior (Rentfrow & Gosling, 2003; Sloboda, 1999), traffic researchers, vehicle manufacturers, and insurance companies
should attend more closely to the benefits and risks associated with it.
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