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Abstract

This study presents a new approach to synthesizing differential item functioning (DIF)
effect size: First, using correlation matrices from each study, we perform a multigroup
confirmatory factor analysis (MGCFA) that examines measurement invariance of a
test item between two subgroups (i.e., focal and reference groups). Then we synthe-
size, across the studies, the differences in the estimated factor loadings between the
two subgroups, resulting in a meta-analytic summary of the MGCFA effect sizes
(MGCFA-ES). The performance of this new approach was examined using a Monte
Carlo simulation, where we created 108 conditions by four factors: (1) three levels of
item difficulty, (2) four magnitudes of DIF, (3) three levels of sample size, and (4) three
types of correlation matrix (tetrachoric, adjusted Pearson, and Pearson). Results indi-
cate that when MGCFA is fitted to tetrachoric correlation matrices, the meta-analytic
summary of the MGCFA-ES performed best in terms of bias and mean square error
values, 95% confidence interval coverages, empirical standard errors, Type I error
rates, and statistical power; and reasonably well with adjusted Pearson correlation
matrices. In addition, when tetrachoric correlation matrices are used, a meta-analytic
summary of the MGCFA-ES performed well, particularly, under the condition that a
high difficulty item with a large DIF was administered to a large sample size. Our
result offers an option for synthesizing the magnitude of DIF on a flagged item across
studies in practice.
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Fairness is a critical component of high-stakes testing from both ethical and legal

standpoints. The Educational Testing Service (2014) considers a test to be ‘‘fair if

any group differences in performance are derived from construct-relevant sources of

variance. The existence of group differences in performance does not necessarily

make a test unfair, because the groups may differ on the construct being measured’’

(p. 57). However, if an examinee’s performance on any test item is affected by

construct-irrelevant characteristics (e.g., male vs. female, students with disability vs.

those without disability), a test or an item is said to be biased, providing an unfair

advantage for one group over others.

Differential item functioning (DIF) is a statistical character of an item that can

help detect whether a test contains a systematic bias based on construct-irrelevant

characteristics. DIF displays the extent to which the performance on an item systema-

tically differs by subgroups (Osterlind & Everson, 2009). The DIF is said to be pres-

ent when examinees in subgroups (e.g., race/ethnicity, gender, socioeconomic status)

with the same level of latent traits have different probabilities of correctly responding

to a given item. Although two types of DIF can be identified in practice—uniform

DIF (constant across ability levels) and nonuniform DIF (varying across ability level),

the current study particularly focuses on a uniform DIF for a dichotomous item.

In the literature, various parametric and nonparametric statistical techniques and

the associated effect-size measures detecting uniform DIF have been well documen-

ted. These are the Mantel–Haenszel (MH) procedure (Camilli & Shepard, 1994;

Hidalgo et al., 2014; Holland & Thayer, 1988; Zwick et al., 2012), logistic regression

(LR) modeling (Gómez-Benito et al., 2009; Hidalgo et al., 2014), item response the-

ory (IRT)–based method (Oshima et al., 2015; Raju, 1988; Steinberg & Thissen,

2006), structural equation modeling (SEM; Bauer, 2017; Steinmetz et al., 2009;

Woods & Grimm, 2011), and variations of the aforementioned techniques (Chang

et al., 1995; Penfield, 2007; Walker, 2011).

While research on DIF detection procedures and the associated effect-size mea-

sures has been proliferating in the field, literature regarding the synthesis of DIF indi-

cators is limited. To our knowledge, of the many DIF indices discussed above, only

the MH and the LR models have been examined as an effect size indicator for the

meta-analyses of DIF detection on an item (i.e., Koo, 2012; Koo et al., 2014; Van de

Water, 2014). Koo (2012) suggested using the MH DIF index in meta-analyses, and

conducted a simulation study that examined its performance. In 2014, Van de Water

conducted a simulation study that compared the Type I error rates and statistical

power of using the LR and the MH DIF indices in meta-analyses. He further exam-

ined the differential effects of other study characteristics, such as sample size, test

2 Educational and Psychological Measurement 00(0)



length, and magnitude of DIF, on Type I error rates and statistical power between LR

and MH in meta-analyses.

Researchers have increasingly used SEM approaches in detecting an item or a test

displaying DIF among subgroups. The two most commonly used SEM approaches

are the multiple indicator and multiple cause (MIMIC) and the multigroup confirma-

tory factor analysis (MGCFA) models. Based on the well-known parametric equiva-

lence between the MIMIC and the IRT models (Muthén et al., 1991), Jin et al. (2012)

have proposed the effect size measure for MIMIC (MIMIC-ES) as given by

MIMIC� ES =
ti � bi

li

� ti

li

= � bi

li

, ð1Þ

where ti is the threshold, bi is direct effect of the grouping as a dummy variable on

the latent factor, and li is the factor loading for ith item.

Similarly, given that the parameters estimated by the MGCFA model are equiva-

lent to item parameters estimated by the IRT model (Stark et al., 2006), the b-para-

meter on the ith item can be written as

bi =
ti

li

, ð2Þ

where ti is the threshold for the ith item.

With the parametric equivalence of difficulty parameters between the MGCFA

and IRT models, the following effect size (MGCFA-ES) can be used as an indicator

that quantifies the magnitude and direction of a uniform DIF on an item between sub-

groups for the MGCFA model as given by

MGCFA� ES = bF
i � bR

i =
tF

i

lF
i

� tR
i

lR
i

, ð3Þ

where F and R are the focal and reference groups, respectively.

The Current Study

Given that the SEM approaches (either MIMIC or MGCFA) have been increasingly

utilized, it is practically important to evaluate whether an effect size estimator derived

from the SEM approaches can be used in meta-analyses. We found that studies do

not always provide sample responses for each item, as would be required in a MIMIC

approach. More often, studies provide correlation matrices among sample responses

on items, making MGCFA-ES a more suitable and practical approach for meta-analy-

ses. In particular, the current study assumes that two separate correlation matrices for

focal and reference groups were reported in each study. From these correlation

matrices, MGCFA-ES and its associated standard error can be estimated and then

synthesized across studies to estimate the DIF on an item.
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Specifically, the current study aims to examine the performance of MGCFA-ES

as an effect-size in meta-analyses and evaluate it using a Monte Carlo simulation. In

the simulation, the bias and mean square error (MSE) values, empirical Type I error

rates, empirical statistical powers, coverage rates of 95% confidence intervals, and

empirical standard errors are all evaluated as outcomes in relation to the following

factors: (1) the type of correlation matrices, (2) the magnitudes of a DIF, (3) the level

of an item difficulty, and (4) the sample size.

Method

For the simulation employed in the current study, it is assumed that six items are

used to measure the underlying ability on a dichotomous scale, with 1 being a correct

answer and 0 being an incorrect answer. Of the six items, it is assumed that one item

displays DIF between the focal and reference groups with different magnitudes of

difficulty (bF2bR).

Data Generation

Using the sim (‘‘irtoys’’) function available in the R Version 3.5.3 (R Core Team,

2019), the response patterns on six items for a total NR + NF observations (i.e., NR for

reference and NF for focal groups, respectively) for 30 studies included in meta-

analyses were generated based on test-takers’ ability level, which is assumed to be

normally distributed with a mean of 0 and a standard deviation of 1 under the 1-PL

(one-parameter logistic) model, where only b-parameters for the biased item are

manipulated. For each of 30 included studies, we extracted three different types of

correlation matrices from the response patterns of a total NR + NF observations on six

items, separately for the reference and focal groups. In addition, the threshold (tj) for

each item was obtained from the proportion of correct answers, which is used as a

mean in the MGCFA.

For each individual study, the MGCFA model (as shown in Figure 1) was fitted

to each type of correlation matrices using the cfa (‘‘lavaan’’) function available in R

Version 3.5.3 (R Core Team, 2019). The model was specified to be 1-PL by con-

straining all loadings, residuals, and thresholds to be constant for two groups, except

the thresholds of a flagged item. The latent factor for the reference group was fixed

to have a mean of 0 with a variance of 1, while the mean and variance of latent factor

for the focal group were freely estimated (Millsap, 2012; Stark et al., 2006). The

model parameters (i.e., loadings and thresholds) of MGCFA were converted to the

item difficulty parameters using Equation 2, and the MGCFA-ES was computed via

Equation 3 for each of the 30 included studies.

Manipulating Factors in the Simulation
Item Parameters. The values of a-parameters were fixed to 1.17 for all six items. The

values of b-parameters for five unbiased items (Items 1-5) were normally distributed
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with a mean of 0 and variance of 1, and three different conditions with low difficulty

(b = 21), medium difficulty (b = 0), and high difficulty (b = 1) were manipulated for

the biased item (Item 6), which was modified within the range obtained from previ-

ous studies (e.g., Jin et al., 2012).

DIF Magnitudes. Followed by a simulation study by Jin et al. (2012), DIF magnitude

for the biased item was manipulated with four different conditions: no DIF (bF2bR =

0), small DIF (bF2bR = .3), medium DIF (bF2bR = .5), and large DIF (bF2bR = .7).

Sample Size. Three different sample size levels were generated, including small (NF

= 200, NR = 400), medium (NF = 350, NR = 700), and large (NF = 500, NR = 1,000),

which are reflective of real test settings by assigning the unbalanced sample sizes for

the focal and reference groups (Jin et al., 2012).

Correlation Type. Three types of correlation matrices were extracted from item

responses for focal and reference groups. In particular, the tetrachoric correlation has

arisen as an alternative, since the Pearson product moment correlation is known to

underestimate the true relationship between dichotomous items. Also, Fillmore et al.

(1998) suggested transforming the Pearson correlation to a tetrachoric correlation by

multiplying it by 3/2. Given that different correlation matrices can be used for

MGCFA, the current study compared how the performance of MGCFA-ES for meta-

analysis differs depending on the type of correlation (i.e., Pearson correlation, tetra-

choric correlation, or adjusted Pearson correlation—Pearson correlation 3 3/2 as

suggested by Fillmore et al., 1998).

Summary. A total of 108 conditions were utilized in the current study, where

MGCFA was fitted to three different correlation types generated from 36 item

Figure 1. Specified multigroup confirmatory factor analysis (MGCFA) model for detecting
differential item functioning (DIF) on one flagged item (Item 6).
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response patterns with 500 replications, totaling 54,000 data points (i.e., 108 3 500

replications).

Meta-Analytic Estimator of MGCFA

Figure 1 shows the MGCFA model for the current simulation study. Once MGCFA-

ES and its associated standard errors are computed from each study, the population

magnitude of DIF on the flagged item between focal and reference groups was esti-

mated using the weighted average of MGCFA-ESs extracted from the individual

studies, which can be computed as

MGCFA�ES� =

Pk
i = 1

Wi½MGCFA-ESi�

Pk
i = 1

Wi

; ð4Þ

and

VMGCFA�ES� =
1

Pk
i = 1

Wi

; ð5Þ

where k is the number of studies included in the meta-analysis and Wi is the inverse

of the associated estimated variance of MGCFA-ESi. Below, MGCFA-ES. is a meta-

analytic estimator of all MGCFA effect sizes from individual studies (MGCFA-ESi).

Evaluation of Meta-Analytic Estimator of MGCFA-ES

The performance of MGCFA-ES as the DIF index was evaluated using bias and MSE

values, which are given by

Bias û
� �

= E û
� �
� u; ð6Þ

and

MSE û
� �

= Bias û
� �� �2

+ var û
� �

; ð7Þ

where û is MGCFA-ES. across all replications for each condition and u is the preset

population value of DIF magnitude. Mean bias values of MGCFA-ES. less than

|60.05| were considered to be within an acceptable range (Hoogland & Boomsma,

1998). In addition, the coverage rate of 95% confidence intervals, empirical standard

errors of the û (

ffiffiffiffiffiffiffiffiffiffiffiffiffi
var(û)

q
), and empirical rejection rates of MGCFA-ES. were
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computed. In order to control for the overall type I error rate, Bonferroni’s adjusted

alpha level of .0083 was used (Kim & Oshima, 2012).

Results

Performance of Meta-Analytic Estimator of MGCFA-ES

The overall performances of MGCFA-ES. are summarized below in terms of (1)

empirical Type I error rates and statistical power, (2) bias and MSE values, and (3)

coverage rate of 95% confidence intervals and empirical standard errors.

Type I Error Rates and Statistical Power. Under the condition that DIF does not occur,

the percentage rates of incorrectly rejecting the null hypothesis were 0.9%, which

were all slightly above the preset nominal Type I error rate of .0083, regardless of

correlation type. In addition, under the condition that DIF is set to occur, the mean

percentages of correctly rejecting the null hypothesis were all equal to 100%. This

result indicates that MGCFA-ES., as the DIF index, has sufficient statistical power

for correctly detecting DIF on the biased item, regardless of the correlation type.

Bias and MSE values. Figure 2 depicts bias and MSE values of MGCFA-ES. by corre-

lation type. When a tetrachoric correlation was used, mean bias and MSE values of

MGCFA-ES. were found to be the smallest (i.e., less than |.05|), indicating that

MGCFA-ES. extracted from a tetrachoric correlation yielded the most accurate esti-

mate of the population magnitude of DIF. However, when a Pearson correlation was

used, bias values of MGCFA-ES. were higher than |.05|. Similarly, the MSE value of

MGCFA-ES. was the smallest when MGCFA was fitted to tetrachoric correlations,

followed by an adjusted Pearson correlation. Regardless of correlation type, mean

bias, and MSE values of MGCFA-ES. were the largest when a large DIF appeared on

the flagged item, followed by medium and small DIFs.

Coverages of 95% Confidence Intervals and Empirical Standard Error. Figure 2 shows cov-

erage of 95% confidence intervals and empirical standard error for MGCFA-ES. by

correlation type and DIF magnitude. Regardless of DIF magnitude, coverage of 95%

confidence intervals around MGCFA-ES. was the largest when a tetrachoric correla-

tion was used, while it was lowest for the Pearson correlation. The empirical standard

errors of MGCFA-ES. were all below .05 and were almost identical, though slightly

less for the tetrachoric correlation.

Factors Affecting Meta-Analytic Estimator of MGCFA-ES

The differential effects of various factors on MGCFA-ES. are summarized below in

terms of (1) bias and MSE values and (2) coverage rate of 95% confidence intervals

and empirical standard errors.
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Bias and MSE Values. As shown in Figure 3, the mean bias values of MGCFA-ES.

were found to be greatest for identifying an item showing a large difference in item

response between focal and reference groups, followed by medium, small, and no

DIF items. An exception was found when a tetrachoric correlation was used, showing

the greatest mean bias values with no DIF item. As shown in Figure 4, the MSE val-

ues of MGCFA-ES. were found to be greatest for identifying an item showing large

DIF in responses between focal and reference groups, followed by medium, small,

and no DIF items.

Coverages of 95% Confidence Intervals and Empirical Standard Error. As shown in Figure

5, coverage rates of MGCFA-ES. were found to be greatest for identifying an item

showing no difference in item responses, followed by small, medium, and large DIF

items for the Pearson and adjusted Pearson correlations. For a tetrachoric correlation,

the coverage rate was the largest for no DIF item, followed by large, medium, and

small DIFs. Such a pattern was consistent across all levels of item difficulty. One

exception was when coverage rate of MGCFA-ES. was the largest for an item with

small DIF when the sample size was set to be small. As shown in Figure 6, the

empirical standard error of MGCFA-ES. was found to be largest for identifying a

large DIF item, followed by small, medium, and no DIF items. The pattern was con-

sistent regardless of the types of correlation matrices.

Figure 2. The bias, MSE, confidence interval (CI) coverage rate, and empirical standard
error (EmpSE) of the meta-analytic estimator of MGCFA-ES, when different correlation
matrices were used to fit MGCFA.
Note. DIF = differential item functioning; Pearson = Pearson correlation matrices were used; Adjusted =

Pearson correlation matrices 3 3/2 were used; tetrachoric = Tetrachoric correlation matrices were used;

MSE = mean square error; MGCFA-ES = multigroup confirmatory factor analysis effect sizes.
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Application to Empirical Data Using R

The current section describes how the proposed method can be utilized in practice.

In this section, we assume five MGCFA-ESs between p subgroups (i.e., p = 2 in this

demonstration) extracted from k independent studies (k = 5 in this demonstration)

that provide (1) Pearson product moment correlation matrices and (2) the proportion

of correct answers on each item. Below, the part of R codes (presented in italics) that

are necessary for each step are presented.

Step 1: Creating a Data Set. As shown in Figure 7, three data sets are created: (1) the

five sets of two correlation matrices among items stacked by rows (saved as

‘‘c.cor’’), (2) the five sets of two proportions of correct answers on each item stacked

by rows (saved as ‘‘c.mean’’), and (3) the five sets of two separate sample sizes

stacked by rows (saved as ‘‘c.n’’). As shown in R code below, the five sets of two

separate correlation matrices among items stacked by rows are corrected by multi-

plying by 3/2 in note 1. The five sets of two proportions of correct answers on each

item are converted into a threshold value as shown in notes 2 and 3.

for(i in 1:k){

c.cor.r=as.matrix(cor.r[(1 + 6*(i-1)):(6*i), 2:7])

c.cor.r1\-(3/2)*(c.cor.r) # adjust Pearson correlation matrices (note #1).

diag(c.cor.r1)\-1

c.cor.f=as.matrix(cor.f[(1 + 6*(i-1)):(6*i), 2:7])

c.cor.f1\-(3/2)*(c.cor.f)

diag(c.cor.f1)\-1

Figure 7. The data set for correlation matrices, the mean of correct answers on each item,
and sample sizes.
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c.mean.r=as.matrix(mean.r[i,2:7])

c.t.r\-c() # convert the proportion of correct answers on each item to its corre-

sponding threshold for reference group (note #2)

for(ii in 1:6){

c.t.r[ii]\-qnorm(1-c.mean.r[, ii])

}

c.mean.f=as.matrix(mean.f[i,2:7])

c.t.f\-c()# convert to threshold for focal (note #3)

for(ii in 1:6){

c.t.f[ii]\-qnorm(1-c.mean.f[, ii])

}

c.n.r=as.matrix(n.r[i, 2])

c.n.f=as.matrix(n.f[i, 2])

Step 2: Fitting MGCFA to the Data Set. Using the cfa (‘‘lavaan’’) available in the

R Version 3.5.3 (R Core Team, 2019), the MGCFA model is specified to fit the

data extracted from each study. In particular, thresholds for all items (x1 to x5)

except a flagged item (x6) are fixed to be the same for the two groups, and factor

scores (f1) are fixed to have means of zero and variances of 1 for the reference

group while they were estimated freely for the focal group as shown in notes 4 to

7. Then, MGCFA-ES (DIF = b72b6) and its associated standard error are esti-

mated as shown in note 8. The specified model (model) is fitted using three data

sets (c.cor, c.mean, and c.n) in the cfa (‘‘lavaan’’) function as shown in note 9.

model \-’

group: 1

f1 =~ l*x1 + l*x2 + l*x3 + l*x4 + l*x5 + l*x6

x1 ~~ residual*x1

x2 ~~ residual*x2

x3 ~~ residual*x3

x4 ~~ residual*x4

x5 ~~ residual*x5

x6 ~~ residual*x6

x1 ~ i1*1

x2 ~ i2*1

x3 ~ i3*1

x4 ~ i4*1

x5 ~ i5*1

x6 ~ i6*1

f1 ~~ 1*f1 # factor scores (f1) have a variance of 1 (note #4)

f1~0*f1 # factor scores (f1) has a mean of 0 (note #5)

group: 2

f1 =~ l*x1 + l*x2 + l*x3 + l*x4 + l*x5 + l*x6

14 Educational and Psychological Measurement 00(0)



x1 ~~ residual*x1

x2 ~~ residual*x2

x3 ~~ residual*x3

x4 ~~ residual*x4

x5 ~~ residual*x5

x6 ~~ residual*x6

x1 ~ i1*1

x2 ~ i2*1

x3 ~ i3*1

x4 ~ i4*1

x5 ~ i5*1

x6 ~ i7*1

f1 ~~ f1 # factor scores are estimated freely (note #6)

f1~f1 # factor scores are estimated freely (note #7)

a := 1.7*(l)/sqrt(residual)

b1 := (i1)/(l)

b2 := (i2)/(l) b3 := (i3)/(l)

b4 := (i4)/(l)

b5 := (i5)/(l)

b6 := (i6)/(l)

b7 := (i7)/(l)

DIF= b7-b6 ’ # define DIF (note #8)

Require(lavaan) # load library called lavaan.

fit.cor = cfa(model, sample.cov = c.cor, sample.mean=c.mean, sample.nobs =

c.n, std.lv=TRUE) # run multiple group CFA using datasets (note #9)

Step 3: Meta-Analysis of MGCFA-ES. The MGCFA-ESs and their associated standard

errors for each study as estimated in Step 2 are combined using the rma(‘‘metafor’’)

available in the R Version 3.5.3 (R Core Team, 2019).

require(metafor)

RE_cor=rma(yi=DIF_cor$dif, sei=DIF_cor$se, data=DIF_cor,

measure="GEN", method="REML")

Summary(RE_cor)

Conclusion and Discussion

The current study (1) proposes a new meta-analytic index (MGCFA-ES) for synthe-

sizing the magnitude of DIF across studies, when an MGCFA was used and (2) eval-

uates the performance of MGCFA-ES using a Monte Carlo Simulation technique,

where a number of factors were manipulated. The meta-analytic summary of
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MGCFA-ES was found to perform reasonably well in terms of the bias and MSE val-

ues, empirical Type I error rates, statistical power, coverage rates, and empirical

standard error. Of the three types of correlations used to fit the MGCFA, tetrachoric

correlation provided the most accurate and unbiased estimate, followed by the

adjusted Pearson product moment correlation. In addition, the proposed meta-

analytic approach for synthesizing DIF across studies was found to yield the most

accurate estimator when a tetrachoric correlation was used to find the item, showing

a large DIF. It was also found that the meta-analytic summary of MGCFA-ES was

most efficient when a tetrachoric correlation based on a large sample size was used.

The current simulation study demonstrated that MGCFA-ES could be used to

summarize the magnitude of DIF across studies included in meta-analyses, when

studies provide correlation matrices and item thresholds summarizing responses for

the known subgroups. The use of tetrachoric correlations yields the most accurate

and efficient estimators of DIF when fitting MGCFA for measurement invariance.

However, when Pearson correlation matrices were reported from the studies, adjust-

ing them by multiplying by 3/2, as suggested by Fillmore et al. (1998), produced

more accurate and unbiased results. As shown in the simulation results, the meta-

analytic summary of MGCFA-ES extracted from the adjusted Pearson correlation

performed almost the same as the meta-analytic summary of MGCFA-ES when tet-

rachoric correlations were fitted. Although the current study might be limited, as not

all features of meta-analysis (i.e., the number of studies included was fixed to 30 and

the fixed effect model was only investigated) were manipulated, we believe that our

study clearly shows MGCFA-ES as a viable option for summarizing the magnitude

of DIF in meta-analyses.

It is our belief that with more published studies using SEM for identifying items

showing DIF in the future, MGCFA-ES shows great promise for wider use. We

strongly recommend that researchers provide separate correlation matrices among

items and the proportion of correct answers on each item. Further research is neces-

sary to expand the current study so that the performance of MGCFA-ES can be evalu-

ated under conditions that mirror different meta-analytic settings. For example, given

that SEM studies are mostly based on larger sample sizes, we used a minimum sam-

ple size of 200 in our simulation. Yet the performance of the MGCFA-ES needs to be

assessed when SEM studies with smaller sample sizes or more items are included. In

addition, future studies should explore meta-analytic methods that can be used to

detect a nonuniform DIF or DIF on polytomous items. Last, an empirical study that

examines the comparability of different DIF effect size indicators is necessary to pro-

vide practical guidelines to meta-analysts.
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